Insoluble Subgroups of the Holomorph of a Finite Soluble Group

Nigel Byott
University of Exeter

Omaha, 2 June 2022

Outline

- §1: The question
- §2: Some things we know
- §3: The main result and some reductions
- §4 Sketch of proof (in 5 steps)

§1: The Question

Question: Can the holomorph of a finite soluble group N contain an insoluble regular subgroup?

§1: The Question

Question: Can the holomorph of a finite soluble group N contain an insoluble regular subgroup?
equivalently:
Can a finite Galois extension with insoluble Galois group G admit a Hopf-Galois structure of soluble type?

§1: The Question

Question: Can the holomorph of a finite soluble group N contain an insoluble regular subgroup?

equivalently:

Can a finite Galois extension with insoluble Galois group G admit a Hopf-Galois structure of soluble type?
or: Can a finite skew brace with soluble additive group have an insoluble multiplicative (circle) group?

§2: Some things we know:

(i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of $\operatorname{Hol}(G)$,
e.g. $N=A_{4} \times C_{5}$ and $G=A_{5}$.

§2: Some things we know:

(i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of $\operatorname{Hol}(G)$,
e.g. $N=A_{4} \times C_{5}$ and $G=A_{5}$.
(ii) We cannot have G regular in $\operatorname{Hol}(N)$ (with G insoluble, N insoluble) if $|G|=|N|<2000$ (Tsang \& Qin, 2020) or if G is a simple group (B 2004; Gorshkov \& Nasybullov, 2021).

§2: Some things we know:

(i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of $\operatorname{Hol}(G)$,
e.g. $N=A_{4} \times C_{5}$ and $G=A_{5}$.
(ii) We cannot have G regular in $\operatorname{Hol}(N)$ (with G insoluble, N insoluble) if $|G|=|N|<2000$ (Tsang \& Qin, 2020) or if G is a simple group (B 2004; Gorshkov \& Nasybullov, 2021).
(iii) There are no counterexamples giving bi-skew braces (Stefanello \& Trappeniers, 2022).

§2: Some things we know:

(i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of $\operatorname{Hol}(G)$,
e.g. $N=A_{4} \times C_{5}$ and $G=A_{5}$.
(ii) We cannot have G regular in $\operatorname{Hol}(N)$ (with G insoluble, N insoluble) if $|G|=|N|<2000$ (Tsang \& Qin, 2020) or if G is a simple group (B 2004; Gorshkov \& Nasybullov, 2021).
(iii) There are no counterexamples giving bi-skew braces (Stefanello \& Trappeniers, 2022).
(iv) We can have an insoluble G as a transitive subgroup of $\operatorname{Hol}(N)$. i.e. we can have a Hopf-Galois structure of soluble type on a non-normal field extension L / K whose Galois closure E has $\operatorname{Gal}(E / K)=G$.

§2: Some things we know:

(i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of $\operatorname{Hol}(G)$,
e.g. $N=A_{4} \times C_{5}$ and $G=A_{5}$.
(ii) We cannot have G regular in $\operatorname{Hol}(N)$ (with G insoluble, N insoluble) if $|G|=|N|<2000$ (Tsang \& Qin, 2020) or if G is a simple group (B 2004; Gorshkov \& Nasybullov, 2021).
(iii) There are no counterexamples giving bi-skew braces (Stefanello \& Trappeniers, 2022).
(iv) We can have an insoluble G as a transitive subgroup of $\operatorname{Hol}(N)$. i.e. we can have a Hopf-Galois structure of soluble type on a non-normal field extension L / K whose Galois closure E has $\operatorname{Gal}(E / K)=G$.
This is easy: take $N=C_{p} \times C_{p}=\mathbb{F}_{p}^{2}$ and $G=\operatorname{Hol}(N)=\mathbb{F}_{p}^{2} \rtimes \mathrm{GL}_{2}(p)$. Then G is insoluble if $p \geq 5$.

§2: Some things we know:

(i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of $\operatorname{Hol}(G)$,
e.g. $N=A_{4} \times C_{5}$ and $G=A_{5}$.
(ii) We cannot have G regular in $\operatorname{Hol}(N)$ (with G insoluble, N insoluble) if $|G|=|N|<2000$ (Tsang \& Qin, 2020) or if G is a simple group (B 2004; Gorshkov \& Nasybullov, 2021).
(iii) There are no counterexamples giving bi-skew braces (Stefanello \& Trappeniers, 2022).
(iv) We can have an insoluble G as a transitive subgroup of $\operatorname{Hol}(N)$. i.e. we can have a Hopf-Galois structure of soluble type on a non-normal field extension L / K whose Galois closure E has $\operatorname{Gal}(E / K)=G$.
This is easy: take $N=C_{p} \times C_{p}=\mathbb{F}_{p}^{2}$ and $G=\operatorname{Hol}(N)=\mathbb{F}_{p}^{2} \rtimes \mathrm{GL}_{2}(p)$. Then G is insoluble if $p \geq 5$.
However this is uninteresting since we have just forced $G^{\prime}=\operatorname{Gal}(E / L)=\operatorname{Stab}_{G}\left(e_{N}\right)$ to be insoluble.
(v) We can have an insoluble transitive subgroup $G \leq \operatorname{Hol}(N)$ where N and G^{\prime} are both soluble.

(v) We can have an insoluble transitive subgroup $G \leq \operatorname{Hol}(N)$ where N and G^{\prime} are both soluble.

Example: (Crespo \& Salguero, 2020)
$N=\mathbb{F}_{2}^{3}, G \cong \operatorname{Aut}(N) \cong \operatorname{GL}_{3}(2) \cong \operatorname{PSL}_{2}(7)$, the simple group of order 168.
In MAGMA notation $G=8 T 37$.

Concretely, write

$$
\operatorname{Hol}(N)=\left(\begin{array}{ccc|c}
& & & * \\
& \mathrm{GL}_{3}(2) & & * \\
& & & * \\
\hline 0 & 0 & 0 & 1
\end{array}\right) .
$$

Concretely, write

$$
\operatorname{Hol}(N)=\left(\begin{array}{ccc|c}
& \mathrm{GL}_{3}(2) & & * \\
& & & * \\
\hline 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then G is generated by a subgroup G^{\prime} of order 21 , say

$$
\left(\begin{array}{lll|l}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right)
$$

Concretely, write

$$
\operatorname{Hol}(N)=\left(\begin{array}{ccc|c}
& & & * \\
& \mathrm{GL}_{3}(2) & & * \\
& & & * \\
\hline 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then G is generated by a subgroup G^{\prime} of order 21 , say

$$
\left(\begin{array}{lll|l}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right)
$$

and a Sylow 2-subgroup (dihedral of order 8), say

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & \\
0 & 1 & 1 & \\
0 & 0 & 1 & \\
\hline 0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll|l}
1 & 0 & 0 & \\
0 & 1 & 1 & \\
0 & 0 & 1 & \\
\hline 0 & 0 & 0 & 1
\end{array}\right) .
$$

Concretely, write

$$
\operatorname{Hol}(N)=\left(\begin{array}{ccc|c}
& & & * \\
& \mathrm{GL}_{3}(2) & & * \\
& & & * \\
\hline 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then G is generated by a subgroup G^{\prime} of order 21 , say

$$
\left(\begin{array}{lll|l}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right)
$$

and a Sylow 2-subgroup (dihedral of order 8), say

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
\hline 0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right) .
$$

Up to conjugacy, this is the unique example with $G=\mathrm{GL}_{3}(2)$.

We can build bigger examples from this one:

$$
N=\underbrace{\mathbb{F}_{2}^{3} \times \cdots \times \mathbb{F}_{2}^{3}}_{r}=\mathbb{F}_{2}^{3 r},
$$

$$
G=\underbrace{\mathrm{GL}_{3}(2) \times \cdots \times \mathrm{GL}_{3}(2)}_{r}
$$

We can build bigger examples from this one:

$$
\begin{gathered}
N=\underbrace{\mathbb{F}_{2}^{3} \times \cdots \times \mathbb{F}_{2}^{3}}_{r}=\mathbb{F}_{2}^{3 r}, \\
G=\underbrace{\mathrm{GL}_{3}(2) \times \cdots \times \mathrm{GL}_{3}(2)}_{r} \rtimes H=\mathrm{GL}_{3}(2) \imath H
\end{gathered}
$$

where H is a transitive soluble subgroup of S_{r}.

§3: The main result and some reductions

Theorem:

Let (G, N) be a pair of finite groups with N soluble, G a transitive insoluble subgroup of $\operatorname{Hol}(N)$ and $G^{\prime}=\operatorname{Stab}_{G}\left(1_{N}\right)$ soluble. Then
(i) if the pair (G, N) is minimal then there are normal subgroups $M \triangleleft N$ and $K \triangleleft G$ with K soluble such that $N / M \cong \mathbb{F}_{2}^{3}$ and $G / K=\mathrm{GL}_{3}(2)$;

§3: The main result and some reductions

Theorem:

Let (G, N) be a pair of finite groups with N soluble, G a transitive insoluble subgroup of $\operatorname{Hol}(N)$ and $G^{\prime}=\operatorname{Stab}_{G}\left(1_{N}\right)$ soluble. Then
(i) if the pair (G, N) is minimal then there are normal subgroups $M \triangleleft N$ and $K \triangleleft G$ with K soluble such that $N / M \cong \mathbb{F}_{2}^{3}$ and $G / K=\operatorname{GL}_{3}(2)$;
(ii) if the pair (G, N) is weakly minimal then there are normal subgroups $M \triangleleft N$ and $K \triangleleft G$ with K soluble such that $N / M \cong \mathbb{F}_{2}^{3 r}$ and $G / K \cong \mathrm{GL}_{3}(2)$ < H for H a transitive soluble subgroup of S_{r}.

§3: The main result and some reductions

Theorem:

Let (G, N) be a pair of finite groups with N soluble, G a transitive insoluble subgroup of $\operatorname{Hol}(N)$ and $G^{\prime}=\operatorname{Stab}_{G}\left(1_{N}\right)$ soluble. Then
(i) if the pair (G, N) is minimal then there are normal subgroups $M \triangleleft N$ and $K \triangleleft G$ with K soluble such that $N / M \cong \mathbb{F}_{2}^{3}$ and $G / K=\mathrm{GL}_{3}(2)$;
(ii) if the pair (G, N) is weakly minimal then there are normal subgroups $M \triangleleft N$ and $K \triangleleft G$ with K soluble such that $N / M \cong \mathbb{F}_{2}^{3 r}$ and $G / K \cong \mathrm{GL}_{3}(2)$ < H for H a transitive soluble subgroup of S_{r}.

Corollary:

For (G, N) as in the Theorem (e.g. if G is a regular insoluble subgroup of $\operatorname{Hol}(N))$ then the simple group $\mathrm{GL}_{3}(2)$ of order 168 occurs as a subquotient of G.
If (G, N) is minimal, then $\mathrm{GL}_{3}(2)$ occurs as a composition factor of G. It is the only non-abelian composition factor of G and it occurs with multiplicity 1.

§3: The main result and some reductions

Theorem:

Let (G, N) be a pair of finite groups with N soluble, G a transitive insoluble subgroup of $\operatorname{Hol}(N)$ and $G^{\prime}=\operatorname{Stab}_{G}\left(1_{N}\right)$ soluble. Then
(i) if the pair (G, N) is minimal then there are normal subgroups $M \triangleleft N$ and $K \triangleleft G$ with K soluble such that $N / M \cong \mathbb{F}_{2}^{3}$ and $G / K=\mathrm{GL}_{3}(2)$;
(ii) if the pair (G, N) is weakly minimal then there are normal subgroups $M \triangleleft N$ and $K \triangleleft G$ with K soluble such that $N / M \cong \mathbb{F}_{2}^{3 r}$ and $G / K \cong \mathrm{GL}_{3}(2)$ < H for H a transitive soluble subgroup of S_{r}.

Corollary:

For (G, N) as in the Theorem (e.g. if G is a regular insoluble subgroup of $\operatorname{Hol}(N))$ then the simple group $\mathrm{GL}_{3}(2)$ of order 168 occurs as a subquotient of G.
If (G, N) is minimal, then $\mathrm{GL}_{3}(2)$ occurs as a composition factor of G. It is the only non-abelian composition factor of G and it occurs with multiplicity 1.

The next task is to define (weakly) minimal.

Running hypothesis: G is a transitive insoluble subgroup of $\operatorname{Hol}(N)=N \rtimes \operatorname{Aut}(N)$ with G^{\prime}, N soluble.
For $g \in \operatorname{Hol}(N)$, write $g=\left(\alpha_{g}, \theta_{g}\right)$ with $\alpha_{g} \in N$ and $\theta_{g} \in \operatorname{Aut}(N)$.
Let $M \leq N$.
Definition: Let $M_{*}=\left\{g \in G: g \cdot 1_{N} \in M\right\}=\left\{g \in G: \alpha_{g} \in M\right\}$. If M_{*} is a subgroup of G, we say M is an admissible subgroup of N. This is equivalent to: $\theta_{g}(m) \in M$ for all $g \in M_{*}$ and all $m \in M$. Then M_{*} acts transitively on M (with soluble kernel).

We call the pair (G, N) minimal if M_{*} is soluble for every admissible $M \lesseqgtr N$.

Running hypothesis: G is a transitive insoluble subgroup of $\operatorname{Hol}(N)=N \rtimes \operatorname{Aut}(N)$ with G^{\prime}, N soluble.
For $g \in \operatorname{Hol}(N)$, write $g=\left(\alpha_{g}, \theta_{g}\right)$ with $\alpha_{g} \in N$ and $\theta_{g} \in \operatorname{Aut}(N)$.
Let $M \leq N$.
Definition: Let $M_{*}=\left\{g \in G: g \cdot 1_{N} \in M\right\}=\left\{g \in G: \alpha_{g} \in M\right\}$. If M_{*} is a subgroup of G, we say M is an admissible subgroup of N.
This is equivalent to: $\theta_{g}(m) \in M$ for all $g \in M_{*}$ and all $m \in M$.
Then M_{*} acts transitively on M (with soluble kernel).
We call the pair (G, N) minimal if M_{*} is soluble for every admissible $M \lesseqgtr N$.
Definition: If $\theta_{g}(m) \in M$ for all $g \in G$ and all $m \in M$, we say M is a G-invariant subgroup of N.
If also $M \triangleleft N$, then G acts on N / M and G / K is a transitive subgroup of $\operatorname{Hol}(N / M)$ for some $K \triangleleft G$.

We call the pair (G, N) weakly minimal if M_{*} is soluble for every G-invariant normal subgroup $M \lesseqgtr N$, and irreducible if there is no non-trivial G-invariant normal subgroup $M \lesseqgtr N$.

Given a pair (G, N) satisfying our hypothesis, we get a minimal pair (H, M) by passing to a suitable subgroup $M \leq N$.

Given a pair (G, N) satisfying our hypothesis, we get a minimal pair (H, M) by passing to a suitable subgroup $M \leq N$.
Given a (weakly) minimal pair (G, N), we can pass to an irreducible pair $(G / K, N / M)$ by quotienting out a maximal G-invariant normal subgroup $M \triangleleft N$. The stabiliser of $1_{N / M}$ is still soluble and, by (weak) minimality, K is soluble.

Given a pair (G, N) satisfying our hypothesis, we get a minimal pair (H, M) by passing to a suitable subgroup $M \leq N$.
Given a (weakly) minimal pair (G, N), we can pass to an irreducible pair $(G / K, N / M)$ by quotienting out a maximal G-invariant normal subgroup $M \triangleleft N$. The stabiliser of $1_{N / M}$ is still soluble and, by (weak) minimality, K is soluble.

Then $(G / K, N / M)$ is still (weakly) minimal. In particular, N / M has no proper non-trivial characteristic subgroups, so it is elementary abelian.

Given a pair (G, N) satisfying our hypothesis, we get a minimal pair (H, M) by passing to a suitable subgroup $M \leq N$.
Given a (weakly) minimal pair (G, N), we can pass to an irreducible pair $(G / K, N / M)$ by quotienting out a maximal G-invariant normal subgroup $M \triangleleft N$. The stabiliser of $1_{N / M}$ is still soluble and, by (weak) minimality, K is soluble.

Then $(G / K, N / M)$ is still (weakly) minimal. In particular, N / M has no proper non-trivial characteristic subgroups, so it is elementary abelian.

So we can reduce to the situation:

$$
\begin{gathered}
V=N=\mathbb{F}_{p}^{d} \text { for some prime } p \text { and some } d \geq 1 \\
G \leq \operatorname{Hol}(V)=\operatorname{Aff}(V)=V \rtimes \operatorname{GL}_{r}(p) \text { is transitive and insoluble, } \\
G^{\prime}=\operatorname{Stab}_{G}\left(0_{V}\right) \text { is a soluble subgroup of index } p^{d} \text { in } G
\end{gathered}
$$

Moreover, V is an irreducible $\mathbb{F}_{p}[G]$-module.

Given a pair (G, N) satisfying our hypothesis, we get a minimal pair (H, M) by passing to a suitable subgroup $M \leq N$.
Given a (weakly) minimal pair (G, N), we can pass to an irreducible pair $(G / K, N / M)$ by quotienting out a maximal G-invariant normal subgroup $M \triangleleft N$. The stabiliser of $1_{N / M}$ is still soluble and, by (weak) minimality, K is soluble.

Then $(G / K, N / M)$ is still (weakly) minimal. In particular, N / M has no proper non-trivial characteristic subgroups, so it is elementary abelian.

So we can reduce to the situation:

$$
\begin{gathered}
V=N=\mathbb{F}_{p}^{d} \text { for some prime } p \text { and some } d \geq 1 \\
G \leq \operatorname{Hol}(V)=\operatorname{Aff}(V)=V \rtimes \operatorname{GL}_{r}(p) \text { is transitive and insoluble }
\end{gathered}
$$

$$
G^{\prime}=\operatorname{Stab}_{G}(0 v) \text { is a soluble subgroup of index } p^{d} \text { in } G .
$$

Moreover, V is an irreducible $\mathbb{F}_{p}[G]$-module.
Our goal for the rest of the talk is to show that for any such pair (G, V),

$$
p=2, \quad V=\mathbb{F}_{2}^{3 r}, \quad G=G L_{3}(2) \imath H \text { with } H \leq S_{r} .
$$

$\S 4$ Sketch of proof (1): Combinatorics of group actions

If $1 \neq J \triangleleft G$ then the orbits of J on V are all of the same size, and G / J transitively permutes these orbits. So J acts transitively on a set of size p^{t} where $1 \leq t \leq d$ and H / J acts transitively on a set of size p^{s} where $0 \leq s<d$. Both actions have soluble point stabilisers.

$\S 4$ Sketch of proof (1): Combinatorics of group actions

If $1 \neq J \triangleleft G$ then the orbits of J on V are all of the same size, and G / J transitively permutes these orbits. So J acts transitively on a set of size p^{t} where $1 \leq t \leq d$ and H / J acts transitively on a set of size p^{s} where $0 \leq s<d$. Both actions have soluble point stabilisers.

Applying this inductively to a composition series

$$
1=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{m}=G
$$

of G, we find
(i) each composition factor G_{i} / G_{i-1} has soluble subgroup of index p^{s} for some $s \geq 0$;
(ii) for $i=1$, we have $s \geq 1$, so $G_{1}=C_{p}$ or a non-abelian simple group.

Step 2: (Representation theory +) Group theory

As V is irreducible, it follows from modular representation theory that G has no non-trivial normal p-subgroup.

Step 2: (Representation theory +) Group theory

As V is irreducible, it follows from modular representation theory that G has no non-trivial normal p-subgroup.

Hence G has no non-trivial subnormal p-subgroup. Combining with Step 1 , this means that G has no non-trivial subnormal soluble subgroup.

Step 2: (Representation theory +) Group theory

As V is irreducible, it follows from modular representation theory that G has no non-trivial normal p-subgroup.

Hence G has no non-trivial subnormal p-subgroup. Combining with Step 1 , this means that G has no non-trivial subnormal soluble subgroup.

In particular, every minimal normal subgroup of G has trivial centre, and is the direct product of isomorphic non-abelian simple groups.

Step 2: (Representation theory +) Group theory

As V is irreducible, it follows from modular representation theory that G has no non-trivial normal p-subgroup.

Hence G has no non-trivial subnormal p-subgroup. Combining with Step 1 , this means that G has no non-trivial subnormal soluble subgroup.

In particular, every minimal normal subgroup of G has trivial centre, and is the direct product of isomorphic non-abelian simple groups.

Recall that the socle $\operatorname{soc}(G)$ of G is the subgroup generated by all minimal normal subgroups. Since for our G, the minimal subgroups have trivial centre, $\operatorname{soc}(G)$ is the direct product of all the minimal normal subgroups.

Hence

$$
\operatorname{soc}(G)=T_{1} \times \cdots \times T_{r}
$$

where the T_{k} are non-abelian simple groups. (We don't yet know that they are all isomorphic.) Conjugation by G permutes the T_{k}, and the orbits give the minimal normal subgroups.

Step 2: (Representation theory +) Group theory

As V is irreducible, it follows from modular representation theory that G has no non-trivial normal p-subgroup.

Hence G has no non-trivial subnormal p-subgroup. Combining with Step 1, this means that G has no non-trivial subnormal soluble subgroup.

In particular, every minimal normal subgroup of G has trivial centre, and is the direct product of isomorphic non-abelian simple groups.

Recall that the socle $\operatorname{soc}(G)$ of G is the subgroup generated by all minimal normal subgroups. Since for our G, the minimal subgroups have trivial centre, $\operatorname{soc}(G)$ is the direct product of all the minimal normal subgroups.

Hence

$$
\operatorname{soc}(G)=T_{1} \times \cdots \times T_{r}
$$

where the T_{k} are non-abelian simple groups. (We don't yet know that they are all isomorphic.) Conjugation by G permutes the T_{k}, and the orbits give the minimal normal subgroups.

Moreover the centraliser of $\operatorname{soc}(G)$ in G is trivial.

Step 3: Clifford theory

Let $S=\operatorname{soc}(G) \triangleleft G$. We study the irreducible $\mathbb{F}_{p}[G]$-module V as an $\mathbb{F}_{p}[S]$-module.

Step 3: Clifford theory

Let $S=\operatorname{soc}(G) \triangleleft G$. We study the irreducible $\mathbb{F}_{p}[G]$-module V as an $\mathbb{F}_{p}[S]$-module.

Simplifying assumption: \mathbb{F}_{p} splits G, i.e. every irreducible $\mathbb{F}_{p}[G]$-module is irreducible over $\overline{\mathbb{F}}_{p}[G]$. (Then same holds for subgroups of G.)

Step 3: Clifford theory

Let $S=\operatorname{soc}(G) \triangleleft G$. We study the irreducible $\mathbb{F}_{p}[G]$-module V as an $\mathbb{F}_{p}[S]$-module.

Simplifying assumption: \mathbb{F}_{p} splits G, i.e. every irreducible $\mathbb{F}_{p}[G]$-module is irreducible over $\overline{\mathbb{F}}_{p}[G]$. (Then same holds for subgroups of G.)
Let U be an irreducible $\mathbb{F}_{p}[S]$-submodule of V. Then $g U$ is an irreducble $\mathbb{F}_{p}[S]$-module for each $g \in G$, and

$$
V=\bigoplus_{i=1}^{m} g_{i} U
$$

for some $g_{1}=1, g_{2}, \ldots, g_{m} \in G$.

Step 3: Clifford theory

Let $S=\operatorname{soc}(G) \triangleleft G$. We study the irreducible $\mathbb{F}_{p}[G]$-module V as an $\mathbb{F}_{p}[S]$-module.
Simplifying assumption: \mathbb{F}_{p} splits G, i.e. every irreducible $\mathbb{F}_{p}[G]$-module is irreducible over $\overline{\mathbb{F}}_{p}[G]$. (Then same holds for subgroups of G.)
Let U be an irreducible $\mathbb{F}_{p}[S]$-submodule of V. Then $g U$ is an irreducble $\mathbb{F}_{p}[S]$-module for each $g \in G$, and

$$
V=\bigoplus_{i=1}^{m} g_{i} U
$$

for some $g_{1}=1, g_{2}, \ldots, g_{m} \in G$.
Let J be a minimal normal subgroup of G. Then, for some $r(J) \geq 1$ and some non-abelian simple group T_{J} we have

$$
J=T_{1} \times \cdots \times T_{r(J)} \text { with all } T_{k} \cong T_{J}
$$

Each T_{k} acts on each $g_{i} U$ (and this action might or might not be trivial).

Let $y(J)$ be the number of simple factors T_{k} acting non-trivially on $U=g_{1} U$.

Let $z(J)$ be the number of summands $g_{i} U$ on which T_{1} acts non-trivially. Then $m y(J)=r(J) z(J)$.

Let $y(J)$ be the number of simple factors T_{k} acting non-trivially on $U=g_{1} U$.

Let $z(J)$ be the number of summands $g_{i} U$ on which T_{1} acts non-trivially.
Then $m y(J)=r(J) z(J)$.
Because \mathbb{F}_{p} splits G, the irreducible $\mathbb{F}_{p}[S]$-module U can be written

$$
U=\bigotimes_{J} U_{J}
$$

where U_{J} is an irreducible $\mathbb{F}_{p}[J]$-module.

Let $y(J)$ be the number of simple factors T_{k} acting non-trivially on $U=g_{1} U$.

Let $z(J)$ be the number of summands $g_{i} U$ on which T_{1} acts non-trivially. Then $m y(J)=r(J) z(J)$.
Because \mathbb{F}_{p} splits G, the irreducible $\mathbb{F}_{p}[S]$-module U can be written

$$
U=\bigotimes_{J} U_{J}
$$

where U_{J} is an irreducible $\mathbb{F}_{p}[J]$-module.
For a particular $J=T_{1} \times \cdots \times T_{r(J)}$, we have

$$
U_{J}=U_{J, 1} \otimes \cdots \otimes U_{J, r(J)}
$$

with $U_{J, k}$ an irreducible $\mathbb{F}_{p}\left[T_{k}\right]$-module.

Let $y(J)$ be the number of simple factors T_{k} acting non-trivially on $U=g_{1} U$.

Let $z(J)$ be the number of summands $g_{i} U$ on which T_{1} acts non-trivially.
Then $m y(J)=r(J) z(J)$.
Because \mathbb{F}_{p} splits G, the irreducible $\mathbb{F}_{p}[S]$-module U can be written

$$
U=\bigotimes_{J} U_{J}
$$

where U_{J} is an irreducible $\mathbb{F}_{p}[J]$-module.
For a particular $J=T_{1} \times \cdots \times T_{r(J)}$, we have

$$
U_{J}=U_{J, 1} \otimes \cdots \otimes U_{J, r(J)}
$$

with $U_{J, k}$ an irreducible $\mathbb{F}_{p}\left[T_{k}\right]$-module.
Let $d\left(T_{J}\right) \geq 2$ be minimal dimension of a non-trivial irreducible $\mathbb{F}_{p}\left[T_{J}\right]$-module. Then $y(J)$ of the $U_{J, j}$ are non-trivial and have dimension $\geq d\left(T_{J}\right)$, while the rest have dimension 1 .

Step 4: The key inequality

Counting \mathbb{F}_{p}-dimensions using

$$
V=\bigoplus_{i=1}^{m} g_{i} U, \quad U=\bigotimes_{J} U_{J}, \quad U_{J}=\bigotimes_{k=1}^{r(J)} U_{J, k},
$$

we find

$$
\operatorname{dim} V=m \operatorname{dim} U=m \prod_{J} \prod_{k=1}^{r(J)} \operatorname{dim} U_{J, k} \geq m \prod_{J} d\left(T_{J}\right)^{y(J)}
$$

Step 4: The key inequality

Counting \mathbb{F}_{p}-dimensions using

$$
V=\bigoplus_{i=1}^{m} g_{i} U, \quad U=\bigotimes_{J} U_{J}, \quad U_{J}=\bigotimes_{k=1}^{r(J)} U_{J, k},
$$

we find

$$
\operatorname{dim} V=m \operatorname{dim} U=m \prod_{J} \prod_{k=1}^{r(J)} \operatorname{dim} U_{J, k} \geq m \prod_{J} d\left(T_{J}\right)^{y(J)}
$$

Since G acts transitively on V, we have $v_{p}(|G|) \geq \operatorname{dim} V$.

Step 4: The key inequality

Counting \mathbb{F}_{p}-dimensions using

$$
V=\bigoplus_{i=1}^{m} g_{i} U, \quad U=\bigotimes_{J} U_{J}, \quad U_{J}=\bigotimes_{k=1}^{r(J)} U_{J, k},
$$

we find

$$
\operatorname{dim} V=m \operatorname{dim} U=m \prod_{J} \prod_{k=1}^{r(J)} \operatorname{dim} U_{J, k} \geq m \prod_{J} d\left(T_{J}\right)^{y(J)}
$$

Since G acts transitively on V, we have $v_{p}(|G|) \geq \operatorname{dim} V$. Recall that $S=\operatorname{soc}(G)$ and $\operatorname{Cent}_{G}(S)$ is trivial. So G embeds in $\operatorname{Aut}(S)$.

Now S is the direct product of the minimal normal subgroups J, and each $J \cong T_{J}^{r(J)}$.

Now S is the direct product of the minimal normal subgroups J, and each $J \cong T_{J}^{r(J)}$.
Let $r=\sum_{J} r(J)$. Then S is the direct product of r non-abelian simple groups, and

$$
G \leq \operatorname{Aut}(S) \leq\left(\prod_{J} \operatorname{Aut}\left(T_{J}\right)^{r(J)}\right) \rtimes S_{r}
$$

Now S is the direct product of the minimal normal subgroups J, and each $J \cong T_{J}^{r(J)}$.
Let $r=\sum_{J} r(J)$. Then S is the direct product of r non-abelian simple groups, and

$$
G \leq \operatorname{Aut}(S) \leq\left(\prod_{J} \operatorname{Aut}\left(T_{J}\right)^{r(J)}\right) \rtimes S_{r}
$$

Hence

$$
v_{p}(G)<\left(\sum_{J} r(J) v_{p}\left(\left|\operatorname{Aut}\left(T_{J}\right)\right|\right)\right)+\frac{r}{p-1}
$$

Now S is the direct product of the minimal normal subgroups J, and each $J \cong T_{J}^{r(J)}$.
Let $r=\sum_{J} r(J)$. Then S is the direct product of r non-abelian simple groups, and

$$
G \leq \operatorname{Aut}(S) \leq\left(\prod_{J} \operatorname{Aut}\left(T_{J}\right)^{r(J)}\right) \rtimes S_{r}
$$

Hence

$$
v_{p}(G)<\left(\sum_{J} r(J) v_{p}\left(\left|\operatorname{Aut}\left(T_{J}\right)\right|\right)\right)+\frac{r}{p-1}
$$

Combining with our lower bound on $\operatorname{dim} V$, we get the Key Inequality

$$
m \prod_{J} d\left(T_{J}\right)^{y(J)}<\sum_{J} r(J)\left(v_{p}\left(\left|\operatorname{Aut}\left(T_{J}\right)\right|\right)+\frac{1}{p-1}\right)
$$

Step 5: Applying the Classification of Finite Simple Groups Recall that each composition factor of G has a soluble subgroup of index $p^{s}, s \geq 0$.

Step 5: Applying the Classification of Finite Simple Groups

Recall that each composition factor of G has a soluble subgroup of index $p^{s}, s \geq 0$.

Using CFSG, Guralnick found all non-abelian simple groups with a proper subgroup of prime-power index. We can deduce from this:

Proposition:

If T is a non-abelian simple group with soluble subgroup of index p^{a} then (T, p, a) is one of:
(i) $\left(\mathrm{PSL}_{3}(2), 7,1\right)$;
(ii) $\left(\operatorname{PSL}_{3}(3), 13,1\right)$;
(iii) $\left(\mathrm{PSL}_{2}\left(2^{\mathrm{a}}\right), p, 1\right)$ where $p=2^{a}+1 \geq 5$ is a Fermat prime;
(iv) $\left(\mathrm{PSL}_{2}(8), 3,2\right)$;
(v) $\left(\operatorname{PSL}_{2}(q), 2, a\right)$ where $q=2^{a}-1 \geq 7$ is a Mersenne prime.

All these T have $|\operatorname{Out}(T)|=2$. Note that $\operatorname{PSL}_{3}(2)=\mathrm{GL}_{3}(2) \cong \operatorname{PSL}_{2}(7)$ is the simple group of order 168.

If the Key Inequality

$$
m \prod_{J} d\left(T_{J}\right)^{y(J)}<\sum_{J} r(J)\left(v_{p}\left(\left|\operatorname{Aut}\left(T_{J}\right)\right|\right)+\frac{1}{p-1}\right)
$$

holds, then (replacing the product by a sum) we find that there must be at least one minimal normal subgroup J of G for which T_{J} satisfies

$$
\begin{equation*}
\frac{1}{y(J)} d\left(T_{J}\right)^{y(J)}<v_{P}\left(\left|\operatorname{Aut}\left(T_{J}\right)\right|+\frac{1}{p-1}\right. \tag{1}
\end{equation*}
$$

In cases (i)-(iii) of the Proposition, the trivial bound $d\left(T_{J}\right) \geq 2$ is enough to show this is impossible. In case (iv), where $p=3$ and $T=\mathrm{PSL}_{2}$ (8), we need to know $d(T)=7$.

So G has at least one composition factor of type (v): $T=\mathrm{PSL}_{2}(q)$ with $q=2^{a}-1 \geq 7$. Hence $p=2$ and all non-abelian composition factors must be of this type (maybe for different q).
Now $d(T)=(q-1) / 2$, and (1) is only satisfied for $a=3$, i.e. $p=7$, and $y(J)=1$ or 2 .

Hence $T_{J}=\mathrm{PSL}_{2}(7)$ for at least one J, and every T_{J} is of the form $\mathrm{PSL}_{2}(q)$. Putting this extra information into the Key Inequality, we can then show that only $q=7$ works, so every non-abelian composition factor of G is $\mathrm{PSL}_{2}(7) \cong \mathrm{GL}_{3}(2)$.

This shows that

$$
\operatorname{soc}(G)=\underbrace{\mathrm{GL}_{3}(2) \times \cdots \times \mathrm{GL}_{3}(2)}_{r}
$$

for some $r \geq 1$. With a little extra work, we can check that

$$
V=\underbrace{\mathbb{F}_{2}^{3} \times \cdots \times \mathbb{F}_{2}^{3}}
$$

with each copy of $\mathrm{GL}_{3}(2)$ acting on a single copy of \mathbb{F}_{2}^{3}, i.e. $y(J)=1$. Moreover $G / \operatorname{soc}(G)$ is a transitive soluble subgroup of S_{r}.
So our irreducible pair (G, V) is as claimed earlier.

References

[$B, 2022$]: On insoluble transitive subgroups in the holomorph of a finite soluble group, arXiv:2205.13464v1 (2022).
[B, 2004]: Hopf-Galois structures on field extensions with simple Galois groups, Bull. London Math. Soc. 36 (2004), 23--29.
[Crespo \& Salguero, 2020]: Computation of Hopf Galois structures on low degree separable extensions and classification of those for degrees p^{2} and $2 p$. Publ. Mat 64 (2020), 121-141.
[Gorshkov \& Nasybullov, 2021]: Finite skew braces with solvable additive group. J. Algebra 574 (2021), 172-183.
[Stefanello \& Trappeniers, 2022]: On bi-skew braces and brace blocks, arxiv:2205.15073v1.
[Tsang \& Qin, 2020]: On the solvability of regular subgroups in the holomorph of a finite solvable group, Internat. J. Algebra Comput. 30 (2020) 253-265.

