Insoluble Subgroups of the Holomorph of a Finite Soluble Group

Nigel Byott

University of Exeter

Omaha, 2 June 2022

Outline

- §1: The question
- §2: Some things we know
- §3: The main result and some reductions
- §4 Sketch of proof (in 5 steps)

Question: Can the holomorph of a finite soluble group N contain an insoluble regular subgroup?

Question: Can the holomorph of a finite soluble group N contain an insoluble regular subgroup?

equivalently:

Can a finite Galois extension with insoluble Galois group G admit a Hopf-Galois structure of soluble type?

Question: Can the holomorph of a finite soluble group N contain an insoluble regular subgroup?

equivalently:

Can a finite Galois extension with insoluble Galois group G admit a Hopf-Galois structure of soluble type?

or: Can a finite skew brace with soluble additive group have an insoluble multiplicative (circle) group?

 (i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of Hol(G),

e.g. $N = A_4 \times C_5$ and $G = A_5$.

- (i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of Hol(G),
 e.g. N = A₄ × C₅ and G = A₅.
- (ii) We cannot have G regular in Hol(N) (with G insoluble, N insoluble) if |G| = |N| < 2000 (Tsang & Qin, 2020) or if G is a simple group (B 2004; Gorshkov & Nasybullov, 2021).

- (i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of Hol(G),
 e.g. N = A₄ × C₅ and G = A₅.
- (ii) We cannot have G regular in Hol(N) (with G insoluble, N insoluble) if |G| = |N| < 2000 (Tsang & Qin, 2020) or if G is a simple group (B 2004; Gorshkov & Nasybullov, 2021).
- (iii) There are no counterexamples giving bi-skew braces (Stefanello & Trappeniers, 2022).

- (i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of Hol(G),
 e.g. N = A₄ × C₅ and G = A₅.
- (ii) We cannot have G regular in Hol(N) (with G insoluble, N insoluble) if |G| = |N| < 2000 (Tsang & Qin, 2020) or if G is a simple group (B 2004; Gorshkov & Nasybullov, 2021).
- (iii) There are no counterexamples giving bi-skew braces (Stefanello & Trappeniers, 2022).
- (iv) We can have an insoluble G as a *transitive* subgroup of Hol(N). i.e. we can have a Hopf-Galois structure of soluble type on a non-normal field extension L/K whose Galois closure E has Gal(E/K) = G.

- (i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of Hol(G),
 e.g. N = A₄ × C₅ and G = A₅.
- (ii) We cannot have G regular in Hol(N) (with G insoluble, N insoluble) if |G| = |N| < 2000 (Tsang & Qin, 2020) or if G is a simple group (B 2004; Gorshkov & Nasybullov, 2021).
- (iii) There are no counterexamples giving bi-skew braces (Stefanello & Trappeniers, 2022).
- (iv) We can have an insoluble G as a *transitive* subgroup of Hol(N). i.e. we can have a Hopf-Galois structure of soluble type on a non-normal field extension L/K whose Galois closure E has Gal(E/K) = G.

This is easy: take
$$N = C_p \times C_p = \mathbb{F}_p^2$$
 and $G = \operatorname{Hol}(N) = \mathbb{F}_p^2 \rtimes \operatorname{GL}_2(p)$. Then G is insoluble if $p \ge 5$.

- (i) (Swapping the groups) we can have the soluble group N occurring as a regular subgroup of Hol(G),
 e.g. N = A₄ × C₅ and G = A₅.
- (ii) We cannot have G regular in Hol(N) (with G insoluble, N insoluble) if |G| = |N| < 2000 (Tsang & Qin, 2020) or if G is a simple group (B 2004; Gorshkov & Nasybullov, 2021).
- (iii) There are no counterexamples giving bi-skew braces (Stefanello & Trappeniers, 2022).
- (iv) We can have an insoluble G as a *transitive* subgroup of Hol(N). i.e. we can have a Hopf-Galois structure of soluble type on a non-normal field extension L/K whose Galois closure E has Gal(E/K) = G.

This is easy: take $N = C_p \times C_p = \mathbb{F}_p^2$ and $G = \operatorname{Hol}(N) = \mathbb{F}_p^2 \rtimes \operatorname{GL}_2(p)$. Then G is insoluble if $p \ge 5$.

However this is uninteresting since we have just forced $G' = \operatorname{Gal}(E/L) = \operatorname{Stab}_G(e_N)$ to be insoluble.

(v) We can have an insoluble transitive subgroup $G \leq Hol(N)$ where N and G' are both soluble.

5/20

(v) We can have an insoluble transitive subgroup $G \leq Hol(N)$ where N and G' are both soluble.

Example: (Crespo & Salguero, 2020) $N = \mathbb{F}_2^3$, $G \cong \operatorname{Aut}(N) \cong \operatorname{GL}_3(2) \cong \operatorname{PSL}_2(7)$, the simple group of order 168. In MAGMA notation G = 8T37.

6 / 20

٠

Then G is generated by a subgroup G' of order 21, say

$$\begin{pmatrix} 0 & 0 & 1 & | & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

•

•

Then G is generated by a subgroup G' of order 21, say

1	0	0	1	0 \	١	1	1	0	0	0)
	1	0	1	0			0	0	1	0	
	0	1	0	0	,		0	1	1	0	
ſ	0	0	0	1	/		0	0	0	1	.]

and a Sylow 2-subgroup (dihedral of order 8), say

$$\begin{pmatrix} 1 & 1 & 0 & | \\ 0 & 1 & 1 & | \\ 0 & 0 & 1 & | \\ \hline 0 & 0 & 0 & | 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & 0 & | \\ 0 & 1 & 1 & | \\ 0 & 0 & 1 & | \\ \hline 0 & 0 & 0 & | 1 \end{pmatrix}$$

.

Then G is generated by a subgroup G' of order 21, say

1	0	0	1	0 \	l l	1	1	0	0	0	/
	1	0	1	0			0	0	1	0	
	0	1	0	0	,		0	1	1	0	
ſ	0	0	0	1	/		0	0	0	1]

and a Sylow 2-subgroup (dihedral of order 8), say

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

Up to conjugacy, this is the unique example with $G = GL_3(2)$.

٠

We can build bigger examples from this one:

$$N = \underbrace{\mathbb{F}_2^3 \times \cdots \times \mathbb{F}_2^3}_{r} = \mathbb{F}_2^{3r},$$
$$G = \underbrace{\operatorname{GL}_3(2) \times \cdots \times \operatorname{GL}_3(2)}_{r}$$

We can build bigger examples from this one:

$$N = \underbrace{\mathbb{F}_2^3 \times \cdots \times \mathbb{F}_2^3}_{r} = \mathbb{F}_2^{3r},$$
$$G = \underbrace{\operatorname{GL}_3(2) \times \cdots \times \operatorname{GL}_3(2)}_{r} \rtimes H = \operatorname{GL}_3(2) \wr H$$

where H is a transitive soluble subgroup of S_r .

Theorem:

Let (G, N) be a pair of finite groups with N soluble, G a transitive insoluble subgroup of Hol(N) and $G' = Stab_G(1_N)$ soluble. Then

(i) if the pair (G, N) is *minimal* then there are normal subgroups $M \lhd N$ and $K \lhd G$ with K soluble such that $N/M \cong \mathbb{F}_2^3$ and $G/K = GL_3(2)$;

Theorem:

Let (G, N) be a pair of finite groups with N soluble, G a transitive insoluble subgroup of Hol(N) and $G' = Stab_G(1_N)$ soluble. Then

- (i) if the pair (G, N) is *minimal* then there are normal subgroups $M \triangleleft N$ and $K \triangleleft G$ with K soluble such that $N/M \cong \mathbb{F}_2^3$ and $G/K = GL_3(2)$;
- (ii) if the pair (G, N) is *weakly minimal* then there are normal subgroups $M \lhd N$ and $K \lhd G$ with K soluble such that $N/M \cong \mathbb{F}_2^{3r}$ and $G/K \cong \mathrm{GL}_3(2) \wr H$ for H a transitive soluble subgroup of S_r .

Theorem:

Let (G, N) be a pair of finite groups with N soluble, G a transitive insoluble subgroup of Hol(N) and $G' = Stab_G(1_N)$ soluble. Then

- (i) if the pair (G, N) is *minimal* then there are normal subgroups $M \triangleleft N$ and $K \triangleleft G$ with K soluble such that $N/M \cong \mathbb{F}_2^3$ and $G/K = GL_3(2)$;
- (ii) if the pair (G, N) is *weakly minimal* then there are normal subgroups $M \lhd N$ and $K \lhd G$ with K soluble such that $N/M \cong \mathbb{F}_2^{3r}$ and $G/K \cong \mathrm{GL}_3(2) \wr H$ for H a transitive soluble subgroup of S_r .

Corollary:

For (G, N) as in the Theorem (e.g. if G is a *regular* insoluble subgroup of Hol(N)) then the simple group $GL_3(2)$ of order 168 occurs as a subquotient of G.

If (G, N) is minimal, then $GL_3(2)$ occurs as a composition factor of G. It is the only non-abelian composition factor of G and it occurs with multiplicity 1.

8 / 20

Theorem:

Let (G, N) be a pair of finite groups with N soluble, G a transitive insoluble subgroup of Hol(N) and $G' = Stab_G(1_N)$ soluble. Then

- (i) if the pair (G, N) is *minimal* then there are normal subgroups $M \triangleleft N$ and $K \triangleleft G$ with K soluble such that $N/M \cong \mathbb{F}_2^3$ and $G/K = GL_3(2)$;
- (ii) if the pair (G, N) is *weakly minimal* then there are normal subgroups $M \lhd N$ and $K \lhd G$ with K soluble such that $N/M \cong \mathbb{F}_2^{3r}$ and $G/K \cong \mathrm{GL}_3(2) \wr H$ for H a transitive soluble subgroup of S_r .

Corollary:

For (G, N) as in the Theorem (e.g. if G is a *regular* insoluble subgroup of Hol(N)) then the simple group $GL_3(2)$ of order 168 occurs as a subquotient of G.

If (G, N) is minimal, then $GL_3(2)$ occurs as a composition factor of G. It is the only non-abelian composition factor of G and it occurs with multiplicity 1.

The next task is to define (weakly) minimal.

Running hypothesis: G is a transitive insoluble subgroup of $Hol(N) = N \rtimes Aut(N)$ with G', N soluble.

For $g \in Hol(N)$, write $g = (\alpha_g, \theta_g)$ with $\alpha_g \in N$ and $\theta_g \in Aut(N)$. Let $M \leq N$.

Definition: Let $M_* = \{g \in G : g \cdot 1_N \in M\} = \{g \in G : \alpha_g \in M\}$. If M_* is a *subgroup* of G, we say M is an *admissible subgroup* of N. This is equivalent to: $\theta_g(m) \in M$ for all $g \in M_*$ and all $m \in M$. Then M_* acts transitively on M (with soluble kernel).

We call the pair (G, N) minimal if M_* is soluble for every admissible $M \leq N$.

Running hypothesis: G is a transitive insoluble subgroup of $Hol(N) = N \rtimes Aut(N)$ with G', N soluble.

For $g \in Hol(N)$, write $g = (\alpha_g, \theta_g)$ with $\alpha_g \in N$ and $\theta_g \in Aut(N)$. Let $M \leq N$.

Definition: Let $M_* = \{g \in G : g \cdot 1_N \in M\} = \{g \in G : \alpha_g \in M\}$. If M_* is a subgroup of G, we say M is an admissible subgroup of N. This is equivalent to: $\theta_g(m) \in M$ for all $g \in M_*$ and all $m \in M$. Then M_* acts transitively on M (with soluble kernel).

We call the pair (G, N) minimal if M_* is soluble for every admissible $M \leq N$.

Definition: If $\theta_g(m) \in M$ for all $g \in G$ and all $m \in M$, we say M is a *G*-invariant subgroup of N.

If also $M \lhd N$, then G acts on N/M and G/K is a transitive subgroup of Hol(N/M) for some $K \lhd G$.

We call the pair (G, N) weakly minimal if M_* is soluble for every G-invariant normal subgroup $M \leq N$, and *irreducible* if there is no non-trivial G-invariant normal subgroup $M \leq N$.

9/20

Given a (weakly) minimal pair (G, N), we can pass to an irreducible pair (G/K, N/M) by quotienting out a maximal *G*-invariant normal subgroup $M \triangleleft N$. The stabiliser of $1_{N/M}$ is still soluble and, by (weak) minimality, *K* is soluble.

Given a (weakly) minimal pair (G, N), we can pass to an irreducible pair (G/K, N/M) by quotienting out a maximal *G*-invariant normal subgroup $M \triangleleft N$. The stabiliser of $1_{N/M}$ is still soluble and, by (weak) minimality, K is soluble.

Then (G/K, N/M) is still (weakly) minimal. In particular, N/M has no proper non-trivial characteristic subgroups, so it is elementary abelian.

Given a (weakly) minimal pair (G, N), we can pass to an irreducible pair (G/K, N/M) by quotienting out a maximal *G*-invariant normal subgroup $M \triangleleft N$. The stabiliser of $1_{N/M}$ is still soluble and, by (weak) minimality, K is soluble.

Then (G/K, N/M) is still (weakly) minimal. In particular, N/M has no proper non-trivial characteristic subgroups, so it is elementary abelian.

So we can reduce to the situation:

 $V = N = \mathbb{F}_p^d$ for some prime p and some $d \ge 1$, $G \le \operatorname{Hol}(V) = \operatorname{Aff}(V) = V \rtimes \operatorname{GL}_r(p)$ is transitive and insoluble, $G' = \operatorname{Stab}_G(0_V)$ is a soluble subgroup of index p^d in G. Moreover, V is an irreducible $\mathbb{F}_p[G]$ -module.

Given a (weakly) minimal pair (G, N), we can pass to an irreducible pair (G/K, N/M) by quotienting out a maximal *G*-invariant normal subgroup $M \lhd N$. The stabiliser of $1_{N/M}$ is still soluble and, by (weak) minimality, *K* is soluble.

Then (G/K, N/M) is still (weakly) minimal. In particular, N/M has no proper non-trivial characteristic subgroups, so it is elementary abelian.

So we can reduce to the situation:

$$V = N = \mathbb{F}_p^d$$
 for some prime p and some $d \ge 1$,
 $G \le \operatorname{Hol}(V) = \operatorname{Aff}(V) = V \rtimes \operatorname{GL}_r(p)$ is transitive and insoluble,
 $G' = \operatorname{Stab}_G(0_V)$ is a soluble subgroup of index p^d in G .
Moreover, V is an irreducible $\mathbb{F}_p[G]$ -module.

Our goal for the rest of the talk is to show that for any such pair (G, V),

$$p=2, \qquad V=\mathbb{F}_2^{3r}, \qquad G=GL_3(2)\wr H ext{ with } H\leq S_r.$$

§4 Sketch of proof (1): Combinatorics of group actions

If $1 \neq J \lhd G$ then the orbits of J on V are all of the same size, and G/J transitively permutes these orbits. So J acts transitively on a set of size p^t where $1 \leq t \leq d$ and H/J acts transitively on a set of size p^s where $0 \leq s < d$. Both actions have soluble point stabilisers.

§4 Sketch of proof (1): Combinatorics of group actions

If $1 \neq J \triangleleft G$ then the orbits of J on V are all of the same size, and G/J transitively permutes these orbits. So J acts transitively on a set of size p^t where $1 \leq t \leq d$ and H/J acts transitively on a set of size p^s where $0 \leq s < d$. Both actions have soluble point stabilisers.

Applying this inductively to a composition series

$$1 = G_0 \lhd G_1 \lhd \cdots \lhd G_m = G$$

of G, we find

- (i) each composition factor G_i/G_{i−1} has soluble subgroup of index p^s for some s ≥ 0;
- (ii) for i = 1, we have $s \ge 1$, so $G_1 = C_p$ or a non-abelian simple group.

As V is irreducible, it follows from modular representation theory that G has no non-trivial normal p-subgroup.

As V is irreducible, it follows from modular representation theory that G has no non-trivial normal p-subgroup.

Hence G has no non-trivial *subnormal* p-subgroup. Combining with Step 1, this means that G has no non-trivial *subnormal soluble* subgroup.

As V is irreducible, it follows from modular representation theory that G has no non-trivial normal p-subgroup.

Hence G has no non-trivial *subnormal* p-subgroup. Combining with Step 1, this means that G has no non-trivial *subnormal soluble* subgroup.

In particular, every minimal normal subgroup of G has trivial centre, and is the direct product of isomorphic non-abelian simple groups.

As V is irreducible, it follows from modular representation theory that G has no non-trivial normal p-subgroup.

Hence G has no non-trivial *subnormal* p-subgroup. Combining with Step 1, this means that G has no non-trivial *subnormal soluble* subgroup.

In particular, every minimal normal subgroup of G has trivial centre, and is the direct product of isomorphic non-abelian simple groups.

Recall that the socle soc(G) of G is the subgroup generated by all minimal normal subgroups. Since for our G, the minimal subgroups have trivial centre, soc(G) is the direct product of *all* the minimal normal subgroups. Hence

$$\operatorname{soc}(G) = T_1 \times \cdots \times T_r$$

where the T_k are non-abelian simple groups. (We don't yet know that they are all isomorphic.) Conjugation by G permutes the T_k , and the orbits give the minimal normal subgroups.

As V is irreducible, it follows from modular representation theory that G has no non-trivial normal p-subgroup.

Hence G has no non-trivial *subnormal* p-subgroup. Combining with Step 1, this means that G has no non-trivial *subnormal soluble* subgroup.

In particular, every minimal normal subgroup of G has trivial centre, and is the direct product of isomorphic non-abelian simple groups.

Recall that the socle soc(G) of G is the subgroup generated by all minimal normal subgroups. Since for our G, the minimal subgroups have trivial centre, soc(G) is the direct product of *all* the minimal normal subgroups. Hence

$$\operatorname{soc}(G) = T_1 \times \cdots \times T_r$$

where the T_k are non-abelian simple groups. (We don't yet know that they are all isomorphic.) Conjugation by G permutes the T_k , and the orbits give the minimal normal subgroups.

Moreover the centraliser of soc(G) in G is trivial.

Let $S = \text{soc}(G) \triangleleft G$. We study the irreducible $\mathbb{F}_{p}[G]$ -module V as an $\mathbb{F}_{p}[S]$ -module.

Let $S = \operatorname{soc}(G) \lhd G$. We study the irreducible $\mathbb{F}_p[G]$ -module V as an $\mathbb{F}_p[S]$ -module.

Simplifying assumption: \mathbb{F}_p splits G, i.e. every irreducible $\mathbb{F}_p[G]$ -module is irreducible over $\overline{\mathbb{F}}_p[G]$. (Then same holds for subgroups of G.)

Let $S = \operatorname{soc}(G) \lhd G$. We study the irreducible $\mathbb{F}_p[G]$ -module V as an $\mathbb{F}_p[S]$ -module.

Simplifying assumption: \mathbb{F}_p splits G, i.e. every irreducible $\mathbb{F}_p[G]$ -module is irreducible over $\overline{\mathbb{F}}_p[G]$. (Then same holds for subgroups of G.)

Let U be an irreducible $\mathbb{F}_p[S]$ -submodule of V. Then gU is an irreducble $\mathbb{F}_p[S]$ -module for each $g \in G$, and

$$V = \bigoplus_{i=1}^m g_i U$$

for some $g_1 = 1, g_2, \ldots, g_m \in G$.

Let $S = \operatorname{soc}(G) \lhd G$. We study the irreducible $\mathbb{F}_p[G]$ -module V as an $\mathbb{F}_p[S]$ -module.

Simplifying assumption: \mathbb{F}_p splits G, i.e. every irreducible $\mathbb{F}_p[G]$ -module is irreducible over $\overline{\mathbb{F}}_p[G]$. (Then same holds for subgroups of G.)

Let U be an irreducible $\mathbb{F}_p[S]$ -submodule of V. Then gU is an irreducble $\mathbb{F}_p[S]$ -module for each $g \in G$, and

$$V = \bigoplus_{i=1}^{m} g_i U$$

for some $g_1 = 1, g_2, \ldots, g_m \in G$.

Let J be a minimal normal subgroup of G. Then, for some $r(J) \ge 1$ and some non-abelian simple group T_J we have

$$J = T_1 \times \cdots \times T_{r(J)}$$
 with all $T_k \cong T_J$.

Each T_k acts on each $g_i U$ (and this action might or might not be trivial).

Let z(J) be the number of summands $g_i U$ on which T_1 acts non-trivially. Then my(J) = r(J)z(J).

Let z(J) be the number of summands $g_i U$ on which T_1 acts non-trivially. Then my(J) = r(J)z(J).

Because \mathbb{F}_p splits G, the irreducible $\mathbb{F}_p[S]$ -module U can be written

$$U = \bigotimes_J U_J$$

where U_J is an irreducible $\mathbb{F}_p[J]$ -module.

Let z(J) be the number of summands $g_i U$ on which T_1 acts non-trivially. Then my(J) = r(J)z(J).

Because \mathbb{F}_p splits G, the irreducible $\mathbb{F}_p[S]$ -module U can be written

$$U = \bigotimes_J U_J$$

where U_J is an irreducible $\mathbb{F}_p[J]$ -module.

For a particular $J = T_1 \times \cdots \times T_{r(J)}$, we have

$$U_J = U_{J,1} \otimes \cdots \otimes U_{J,r(J)}$$

with $U_{J,k}$ an irreducible $\mathbb{F}_p[T_k]$ -module.

Let z(J) be the number of summands $g_i U$ on which T_1 acts non-trivially. Then my(J) = r(J)z(J).

Because \mathbb{F}_p splits G, the irreducible $\mathbb{F}_p[S]$ -module U can be written

$$U = \bigotimes_J U_J$$

where U_J is an irreducible $\mathbb{F}_p[J]$ -module.

For a particular $J = T_1 \times \cdots \times T_{r(J)}$, we have

$$U_J = U_{J,1} \otimes \cdots \otimes U_{J,r(J)}$$

with $U_{J,k}$ an irreducible $\mathbb{F}_p[T_k]$ -module.

Let $d(T_J) \ge 2$ be minimal dimension of a non-trivial irreducible $\mathbb{F}_p[T_J]$ -module. Then y(J) of the $U_{J,j}$ are non-trivial and have dimension $\ge d(T_J)$, while the rest have dimension 1.

Step 4: The key inequality

Counting \mathbb{F}_p -dimensions using

$$V = \bigoplus_{i=1}^{m} g_i U, \qquad U = \bigotimes_J U_J, \qquad U_J = \bigotimes_{k=1}^{r(J)} U_{J,k},$$

we find

$$\dim V = m \dim U = m \prod_J \prod_{k=1}^{r(J)} \dim U_{J,k} \ge m \prod_J d(T_J)^{y(J)}.$$

Step 4: The key inequality

Counting \mathbb{F}_p -dimensions using

$$V = \bigoplus_{i=1}^{m} g_i U, \qquad U = \bigotimes_J U_J, \qquad U_J = \bigotimes_{k=1}^{r(J)} U_{J,k},$$

we find

$$\dim V = m \dim U = m \prod_J \prod_{k=1}^{r(J)} \dim U_{J,k} \ge m \prod_J d(T_J)^{y(J)}.$$

Since G acts transitively on V, we have $v_p(|G|) \ge \dim V$.

Step 4: The key inequality

Counting \mathbb{F}_{p} -dimensions using

$$V = \bigoplus_{i=1}^m g_i U, \qquad U = \bigotimes_J U_J, \qquad U_J = \bigotimes_{k=1}^{r(J)} U_{J,k},$$

we find

$$\dim V = m \dim U = m \prod_{J} \prod_{k=1}^{r(J)} \dim U_{J,k} \ge m \prod_{J} d(T_J)^{y(J)}$$

Since G acts transitively on V, we have $v_p(|G|) \ge \dim V$.

Recall that S = soc(G) and $\text{Cent}_G(S)$ is trivial. So G embeds in Aut(S).

Let $r = \sum_{J} r(J)$. Then S is the direct product of r non-abelian simple groups, and

$$G \leq \operatorname{Aut}(S) \leq \left(\prod_{J} \operatorname{Aut}(T_{J})^{r(J)}\right) \rtimes S_{r}.$$

Let $r = \sum_{J} r(J)$. Then S is the direct product of r non-abelian simple groups, and

$$G \leq \operatorname{Aut}(S) \leq \left(\prod_{J} \operatorname{Aut}(T_{J})^{r(J)}\right) \rtimes S_{r}.$$

Hence

$$v_p(G) < \left(\sum_J r(J)v_p(|\operatorname{Aut}(T_J)|)\right) + \frac{r}{p-1}.$$

Let $r = \sum_{J} r(J)$. Then S is the direct product of r non-abelian simple groups, and

$$G \leq \operatorname{Aut}(S) \leq \left(\prod_{J} \operatorname{Aut}(T_{J})^{r(J)}\right) \rtimes S_{r}.$$

Hence

$$v_p(G) < \left(\sum_J r(J)v_p(|\operatorname{Aut}(T_J)|)\right) + \frac{r}{p-1}.$$

Combining with our lower bound on dim V, we get the Key Inequality

$$m\prod_{J}d(T_{J})^{y(J)} < \sum_{J}r(J)\left(v_{p}(|\operatorname{Aut}(T_{J})|)+\frac{1}{p-1}\right).$$

Step 5: Applying the Classification of Finite Simple Groups

Recall that each composition factor of G has a soluble subgroup of index p^s , $s \ge 0$.

Step 5: Applying the Classification of Finite Simple Groups

Recall that each composition factor of G has a soluble subgroup of index p^s , $s \ge 0$.

Using CFSG, Guralnick found all non-abelian simple groups with a proper subgroup of prime-power index. We can deduce from this:

Proposition:

If T is a non-abelian simple group with *soluble* subgroup of index p^a then (T, p, a) is one of:

- (i) (PSL₃(2), 7, 1);
- (ii) (PSL₃(3), 13, 1);
- (iii) $(PSL_2(2^a), p, 1)$ where $p = 2^a + 1 \ge 5$ is a Fermat prime;
- (iv) $(PSL_2(8), 3, 2);$
- (v) $(PSL_2(q), 2, a)$ where $q = 2^a 1 \ge 7$ is a Mersenne prime.

All these T have |Out(T)| = 2. Note that $PSL_3(2) = GL_3(2) \cong PSL_2(7)$ is the simple group of order 168.

If the Key Inequality

$$m\prod_{J}d(T_{J})^{y(J)} < \sum_{J}r(J)\left(v_{p}(|\operatorname{Aut}(T_{J})|) + \frac{1}{p-1}\right).$$

holds, then (replacing the product by a sum) we find that there must be at least one minimal normal subgroup J of G for which T_J satisfies

$$\frac{1}{y(J)}d(T_J)^{y(J)} < v_P(|\operatorname{Aut}(T_J)| + \frac{1}{p-1}.$$
 (1)

In cases (i)–(iii) of the Proposition, the trivial bound $d(T_J) \ge 2$ is enough to show this is impossible. In case (iv), where p = 3 and $T = PSL_2(8)$, we need to know d(T) = 7.

So G has at least one composition factor of type (v): $T = PSL_2(q)$ with $q = 2^a - 1 \ge 7$. Hence p = 2 and all non-abelian composition factors must be of this type (maybe for different q).

Now d(T) = (q - 1)/2, and (1) is only satisfied for a = 3, i.e. p = 7, and y(J) = 1 or 2.

Hence $T_J = PSL_2(7)$ for at least one J, and every T_J is of the form $PSL_2(q)$. Putting this extra information into the Key Inequality, we can then show that only q = 7 works, so *every* non-abelian composition factor of G is $PSL_2(7) \cong GL_3(2)$.

This shows that

$$\operatorname{soc}(G) = \underbrace{\operatorname{GL}_3(2) \times \cdots \times \operatorname{GL}_3(2)}_r$$

for some $r \ge 1$. With a little extra work, we can check that

$$V = \underbrace{\mathbb{F}_2^3 \times \cdots \times \mathbb{F}_2^3}_{2}$$

with each copy of $GL_3(2)$ acting on a single copy of \mathbb{F}_2^3 , i.e. y(J) = 1. Moreover $G/\operatorname{soc}(G)$ is a transitive soluble subgroup of S_r .

So our irreducible pair (G, V) is as claimed earlier.

References

[B, 2022]: On insoluble transitive subgroups in the holomorph of a finite soluble group, arXiv:2205.13464v1 (2022).

[B, 2004]: Hopf-Galois structures on field extensions with simple Galois groups, Bull. London Math. Soc. 36 (2004), 23–29.

[Crespo & Salguero, 2020]: Computation of Hopf Galois structures on low degree separable extensions and classification of those for degrees p^2 and 2p. Publ. Mat 64 (2020), 121–141.

[Gorshkov & Nasybullov, 2021]: Finite skew braces with solvable additive group. J. Algebra 574 (2021), 172-183.

[Stefanello & Trappeniers, 2022]: On bi-skew braces and brace blocks, arxiv:2205.15073v1.

[Tsang & Qin, 2020]: On the solvability of regular subgroups in the holomorph of a finite solvable group, Internat. J. Algebra Comput. 30 (2020) 253–265.